What next? Potential species replacements for black ash in northern Minnesota in a changing climate Black Ash Symposium Bemidji, MN Louis R. Iverson¹, Kathleen Knight¹, Anantha Prasad¹, Stephen Matthews¹, Matthew Peters¹, Daniel A. Herms² and Annemarie Smith³ ¹Northern Research Station, NRS-02, Delaware, OH ²Dept. Entomology, Ohio State University, Wooster, OH ³Ohio DNR, Division of Forestry, Columbus, OH # Outline - Some general climate trends - Overview of our climate change modeling approach - Potential species habitat changes by 2100 - Evaluation of MN FIA data - Evaluation of Ohio and Michigan plots - Summary of possible replacements for black ash # Major Factors Affecting Climate 1950 - Present # Historic Climatic Trends ## Temperature Trends Annual average temperatures compared to mean baseline. NOAA, 2009 #### Recent shifts in climatic regimes Comparison of components of climatic regimes of the 1961-1990 versus 1991-2007 periods From Dave Cleland, USFS, 2010 From Dave Cleland, USFS, 2010 Responses to warming temperatures seen in more than 26,000 physical and biological systems around the world. 1910: 150 glaciers; Today: 30 glaciers # Future effects Highly tied to the level of CO2 emissions # Emissions of CO2 – range of scenarios over next 100 years A1fi (high)-fossil fuel intensive until later century B1 (low)-shift to resource efficient technology # Rising Temperatures in E. US (annual average) How's present-day vegetation going change with such rapid climate change + human-landuse disturbance ?!? Source: Davis, 1981. Our Approach: Climate Change Impacts on Species **DISTRIB** Current **Future Climates Climate** (2040, 2070, 2100) Model Climate Random Forest Models **Environmental** Change Data 134 trees/147 birds Data - soils, Tree & Used elevation, landscape **Bird Web Model Reliability Atlas Suitable Habitat Bird Abundance** Tree Abundance (20 km) Data (FIA) Data (BBS) **SHIFT Migration Validation** Land-use Model Pattern and **Synthesis** Change **Modifying Adaptive** - FIA **Factors** trends Management **Potential** - Other **Distribution Biological** Local models in 100 years Model **Knowledge** (1 km) **Issues** & Genetics Disturbance ### Assembling responses # Forest Inventory and Analysis (FIA) - 37 states east of 100th meridian - 134 tree taxa - 103,488 plots - 2,938,518 tree records - Extract FIA plot data by State - Calculate Importance Value (IV) for each species (basal area & no. of stems) - Aggregate plots to 20x20 km grids (approx. 10,000 cells for eastern US) #### OUTDUT Importance Values (Abundances) (IV) for 134 tree species by 20 km cell (Range of IV: 0-100) #### White Oak Importance Value and Little's Bnd ## Tree species predictors #### **38 Predictors** - 7 Climate - 9 Soil Classes - •13 Soil Properties - •5 Elevation - 3 Land-use - 1 Fragmentation Index A1fi + HadCM3 (HadHi) – Most extreme **B1** + PCM (PCMLo)— Least extreme Had+GFDL+PCM/A1fi - Ave Hi Had+GFDL+PCM/B1 - Ave Lo ## **Modeling species habitats** (Importance Values) FIA Current (2040, 2070, 2100) Model Random Forest Models Environmental Data 134 trees/147 birds Data - soils. Used elevation, landscape Model Reliability Suitable Habitat Bird Abundance (20 km) Validation Land-use Pattern Synthesis and Modifying Change **Factors** **Future Climates** Knowledge & Genetics DISTRIB Climate Change Tree & Bird Web Atlas Model Potential Distribution in 100 years (1 km) Biological Disturbance **Importance Values** for 134 Tree **Species** **DISTRIB** Tree Model Model **Predicted** Current Climat - Soil - Elevation - Land-use - Landscape **GCM Climate** Swap HadCM3, PCM, GFDL (Hi & Low Emissions) **Model Predicted Future Suitable** Habitat **Importance Maps** Hotspot **Change Maps** **Mean Center Distribution Maps** Ranked **Species Lists** #### Tri-Model Approach Helps understand relationships, and map drivers TJuly < 16.5 Single Decision Tree 750 &//3 random sampling of observations for each tree PH <= 6 30 decision trees Bagging Trees use 30 decision trees to assess variability among individual tree models - a measure of model reliability Model Reliability: ⋒ High 🦲 Medium (Random sampling + randomized subset of predictors for each tree 1000 decision trees Random Forests best for prediction without overfitting # Important! - With these DISTRIB models, we are predicting potential suitable habitat by year 2100. We are NOT predicting where the species will be at that time, as great lag times are involved in tree species migrations. - We attempt to get at the potential movements over the next 100 yrs with the SHIFT model. Northern Research Station You are here: NRS Home / Tools & Applications / Climate Change Atlas / Tree Atlas #### Climate Change Tree Atlas (A Spatial Database of 134 Tree Species of the Eastern USA) anantha M Prasad, Louis R Iverson, Steve Matthews, Matt Peters Atlas Background What's New | Citations | Atlas Help Credits #### Table of 134 Tree Species: | Reliability | Spp. # | Common Name | Scientific Name | |-------------|--------|------------------------------|------------------------| | 0 | 951 | American basswood | Tilia americana | | | 531 | American beech | Fagus grandifolia | | 0 | 421 | American chestnut | Castanea dentata | | 0 | 972 | American elm | Ulmus americana | | • | 591 | American holly | Пех ораса | | 0 | 391 | American hornbeam:musclewood | Carpinus caroliniana | | 0 | 935 | American mountain-ash | Sorbus americana | | | 43 | Atlantic white-cedar | Chamaecyparis thyoides | #### Climate Change Tree Atlas Other Links (DropDownMenu) Model Reliability: 📵 High 🚫 Medium 🬑 Low 134 Species Combined/Compared Northern Research Station Other Links (DropDownMenu Cer Saccharum) Pick Another Species Climate Change #### species milorinacion Family: Aceraceae Guild: persistent, slow-growing understory tolerant Functional Lifeform: large deciduous tree Life History and Disturbance Response #### **External Species Links** Silvics Manual: Click here for sugar maple Plant Photos: Photos of the tree in USDA Plants Database Google Earth: View current and modelled sugar maple Research Products (IMPORTANT: Read this first) http://www.nrs.fs.fed.us/atlas #### **Black Ash** #### **Number of MN FIA Plots with Black Ash Present** ■ Present ■ Absent # Black ash habitat would decline by 2100 Ratio of Suitable Habitat in Future to Now by Increasingly Harsh Scenario #### **Mean Center Potential Movement** **Two points:** - 1. Emission levels make big difference - 2. Species will change individually Direction and distance (km) movement ## Lessons Learned Separate the discussion of potential changes in suitable habitat from that of potential species range changes within a certain time frame. RandomForest based **Spatially explicit Statistical Model** cell-based Model (potential suitable (colonization probability) habitat) **FIA Data Calculate IV Future** Current **Climate Species** Climate (Hadley, PCM, GFDL) **Range Maps** 100yr **Smoothed** Colonization IV **Probabilities Percent Forest Environmental Variables** #### How much of the new suitable habitat might get colonized in 100 years? Quercus falcata var. falcata Probability of colonization, 0-100%, 100 yrs - For 5 species, less than 15% of new habitat would have much chance of getting colonized - Large lag effect suitable habitat changes much faster than species can migrate #### Lessons Learned Consider variations in disturbance, biology, and model issues on each modeled species. No model, statistical or otherwise, can include all the biological or disturbance factors that may influence a species' response to climate change Need a method to incorporate other influences – modifying factors Glean literature and generatea scoring system to rate21 factors Black Ash V Hi Pos High pos Low pos **Minimal** Low neg High neg V Lo neg #### Lessons Learned #### Search for data to support (or not) the models - Convergence of multiple models - e.g., Nielson et al. (MAPPS, MC1) - Mladenoff et al. (LANDIS-II) - Documentations of species changes - e.g., northward or elevation expansions, - changes in forest types - Other surrogate ways to determine possible trends - E.g., Woodall et al. (FIA data) Contents lists available at ScienceDirect #### Forest Ecology and Management An indicator of tree migration in forests of the eastern United States C.W. Woodall^{a,*}, C.M. Oswalt^b, J.A. Westfall^c, C.H. Perry^a, M.D. Nelson^a, A.O. Finley^d .13° North*** .46° North *** 37 of 40 species have general tendencies in agreement with our models Black Ash "zone" and Habitat, 2000 Black Ash Habitat, 2100, Had Hi # Expected growing season changes (for northern Wisconsin) Growing season temperature higher and not much change in precipitation = more physiological stress on biota # Potential Changes for Tree Species - Evaluated 85 species from the region - Put in to 8 classes of impacts - Class 1: extirpated (2 species) - Class 2: large decrease (6 species) - Class 3: small decrease (14 species) - Class 4: no change (5 species) - Class 5: small increase (10 species) - Class 6: large increase (23 species) - Class 7: new entry-high and low emissions (12 species) - Class 8: new entry-high emissions (13 species) - Score each species for modification factors to help managers interpret potential impacts and suggest adaptation strategies → Large tables! | | D | c | D | E | r | G | | | К | L | н | ۰ | P a | |----------|------------|--------------|--------------|--------------|--------------|--------------|------------|-----------------|-----------------|---------------|------|----------------------------------|--| | 1 2 | 71A | 158 | 20 | gamela
S | ,t: | Ladki | P . | | GCHSL | | 1.00 | manufair maple | Recrupiestes | | 1 | 12 | 2951 | 784 | 92
334 | 172 | 173 | 8.2 | 1.51 | 1.02 | 1.00 | 1.00 | kellereel
kelnem für | Andrew sincera
Abica balanca | | 5 | 95 | 2858 | 348 | 196 | 117 | 117 | 8.4 | | 1.16 | 8.86 | 2.88 | Manhaprane | Piera mariana | | , | 241
375 | 1433 | 1838 | 451
1548 | 926
595 | 288 | 8.4 | | 8.22 | | | paper birah | Theja ensidentation Petala pappeifera | | | 746 | 11254 | 5585 | 4874 | 2857 | 2811 | 1.4 | 1 / /.43 | 1.41 | 8.48 | 2.88 | quality supre | Papalan lermalaide | | 1 | 761
71 | 1551 | 187 | 197 | 28
778 | 745 | 1.0 | 7 | 8.27 | | | pin abeerg
Jamaranh [naline] | Proces prospleasina
Laria lariaina | | 11 | 34 | 585 | 512 | 518 | 275 | 275 | 8.5 | 4 8.55 | | | 5.88 | ubile aprese | Pieraglanea | | 12 | 185 | 1782 | 1999 | 1783 | 7484 | 1165
679 | 1.2 | _ | 1.65 | | | jank pine
eanleen ubilepine | Piese kaskeiasa
Piese eleskes | | 14 | 261 | 296 | 347 | 274 | 172 | 154 | 1.1 | _ | 8.58 | | | ranters bemlank | Tengananadronia | | IS
IS | 316
318 | 9527
9597 | 9751
9964 | 3458
3138 | 2866 | 2741 | 1.0 | | 8.81
8.53 | | | eed maple
magae maple | Accepted
Accepted | | 17 | 371 | 562 | 385 | 281 | 162 | 158 | 1.6 | | 8.25 | | | gellau bieak | Pelula alleghaniennin | | | 549
694 | 2768 | 1951 | 1827 | 1478 | 1996 | 8.7 | | 8.59
8.58 | | | black ack | Pranissonigra
Hypna agnalina | | i | 741 | 1548 | 233 | 478 | 576 | 687 | 1.4 | | | | | baleam poplar | Papalan kalmamifera | | 11 | 745
765 | 1885 | 338 | 799 | 952 | 982
295 | 1.1 | | | 8.58 | | highealk sepre | Populos grandidentata
Process sirginiana | | 9 | 833 | 2975 | 9516 | 3784 | 252
2116 | 1875 | 1.4 | | 1 | 8.73 | | andbernerdash | Querosa rabes | | 4 | 125
544 | 1255 | 1915 | 1454 | 1178 | 1877
2541 | 1.0 | | | 1,28 | | erd pine | Piecerraines | | :S | 183 | 474 | 536 | 657 | 591 | 546 | 1.1 | | | 1.15 | | geera auk
auelheen pinnak | Pranisso preseglazaina
Gerreno ellipsoidalio | | 7 | 954 | 2141 | 2997 | 5633 | 2584 | 2215 | 1.1 | | | 1.83 | 4.88 | American kannung | Tilia americana
Ulmos Ikonasii | | - | 977
97 | 13 | 58
31 | 55
91 | 25 | 78 | 1.5 | | | | | red spread | Pierarebree | | ш | 915
956 | 17 | 16 | 28 | 27 | 25 | 4.5 | | | | 5.88 | alriped maple | Acrescalession | | 12 | 375 | 2 | • | 11 | 22 | 28 | 2.6 | | 4.58
7.55 | | 5.88 | Serviceberry
gray birob | Amelanskier opp.
Delola popolifolla | | 13 | 331 | 225 | 582 | 323 | 417 | 421 | 1.5 | | | 4.07 | 5.88 | American berebras | Carpines sareliniasa | | 14 | 452
461 | 11 | 5 | 5 | 128 | 151
166 | 8.4 | | | | | eerlbree ealalpa | Calalpa oproisea
Cellio laroigala | | IE. | 781 | 323 | 1878 | 1582 | 1917 | 1925 | 1.1 | | | | | raulers kapkarake. | | | 17
18 | 762
829 | 817
2755 | 2282 | 2141 | 1581
5877 | 1183 | 1.8 | | | | | black skeers
kernak | Presenteralies
Gerroon manrosarps | | 13 | 58
313 | 1675 | 1183 | 2599 | 4877
9522 | 3883 | 15.1 | | 48.54
2.48 | | | rantern reducedar
baselder | Janiperan nieginiana | | н | 317 | 272 | 1881 | 1437 | 1864 | 1588 | 3.6 | | | | | silver maple | Acresqueda
Acresquebariosa | | 12 | 979 | 12 | 38 | | 142 | 175 | 2.5 | | | | | riare birak | Pelala signa | | 13 | 482 | 192
258 | 444 | 1831 | 1114 | 714 | 2.5 | | | | | billernal biobarq | Carga sordiformio
Carga soala | | ıs | 462 | 115 | 852 | 1478 | 2518 | 2669 | 7.2 | | | | 6.00 | kankkeren | Cellinamidentalia | | 17 | 591
541 | 175
477 | 978
854 | 363 | 1857 | 486 | 2.1 | | | | | American break
while sub | Pages grandifelia | | _ | 682 | 33 | 526 | 524 | 1685 | 1741 | 15.5 | | | | | Mark water! | Juglann nige a | | - | 641
682 | 25
15 | 194 | 211
785 | 2857 | 2218 | 21.7 | | 26.45
157.15 | | | enage-erange
erd malkeren | Hanlara pomifera
Haran robra | | 1 | 742 | 254 | 627 | 1228 | 2785 | 2542 | 2.5 | | | | | ranters unlineased | | | 3 | 766
882 | 25
847 | 25
1897 | 2252 | 584
2882 | 526
2899 | 1.8 | | | | | uild plan
ubile aub | Presentanceinana
Gerroonalka | | 4 | 114 | 33 | 72 | 118 | 255 | 247 | 1.0 | | | | | nump utile sate | Queens bissler | | :S | 858
857 | 411 | 1311 | 113 | 337
2814 | 427
2169 | 2.6 | | | | | pin nah
blank nah | Querosa palastria
Querosa artatina | | 7 | 381 | 12 | 281 | 958 | 1955 | 1615 | 15.7 | | | | | Mark Issuel | Robinia peredeanania | | | 921
922 | 269 | 59
674 | 195
979 | 1454 | 517
1582 | 1.1 | | 8.38
5.41 | | | praektraf uitteu
klaek uitteu | Salin amqqdalniden
Salin nigea | | Ξ | 972 | 2296 | 5887 | 9556 | 5257 | 5448 | 1.5 | | 2.95 | | | Americantle | Ulman americana
Ulman entra | | 12 | 975
994 | 254 | 364 | 1972 | 1651
246 | 1717 | S.B
lef | 1 5.48
146 | lef | 1-6 | | olipperquia
Obio bookege | Acouston glabea | | 3 | 483 | 1 | 82 | 113 | 337 | 368 | 82.8 | | | | | piqual bisharq | Carga glabra | | 5 | 483 | - 1 | 14 | 64
75 | 333
555 | 659 | | 8 64.88
1e6 | 333.88
lef | 384.88
lef | 7.00 | anabernal biobarq | Carga lementona
Cernin nanadennin | | | 491
552 | | 52 | 121 | 995 | 958
4565 | 146 | 146
8 448.68 | 1ef
284.88 | 1ef
313.88 | 7.00 | ing dequeed | Caraca Florida | | 7 | 532
621 | i | 224 | 559 | 1424 | 165 | | 146 | 1=F | 1=F | 7.88 | | Gledilais leisasalkaa
Lieindendena lalipifees | | 3 | 751 | | 28 | 25 | 258 | 515 | | lef | lef. | 1e6
245.00 | 7.88 | /amerr | Plalamenmidentalia | | - | 817
826 | 1 | 22 | 36 | 255
478 | 245
544 | B.B
lef | 8 68.88
146 | 259.88
lef | 1-F | / | dingle nak
dinkapin nak | Querosa imbeloaria
Querosa marblesbergii | | '2 | 895 | | | 59 | 1465 | 1786 | | lef | lef. | lef. | | pool oak | Queens alellala | | 4 | 131 | - 1 | 71 | 188 | 182 | | 19.5
HA | 1 27.00
1 6 | 100.50 | 184.88 | | lablelly pier | Sannafran albidom
Pinno larda | | '5 | 572 | 1 | 1 | • | 44 | 36 | 1.8 | 1.11 | 44.11 | 36.88 | 1.11 | auerl birak | Pelala leala | | 7 | 484 | : | : | 12 | 115 | 162
95 | | lef
lef | lef
lef | lef
lef | | skell' | Carga illinorenio
Carga lanininoa | | • | 411 | | • | | 512 | 353 | | lef- | lef . | lef . | 1.11 | klas there | Cargalinassa | | 2 | 521
571 | | : | | 33
58 | 118
77 | HA
E.E | HA
8 6.88 | 1ef
58.88 | 146
77.88 | | | Disappras sirgisisas
Ggassalsdas disisas | | н | 611 | | • | • | 71 | 78 | HA | lef . | lef . | lef | 1.11 | - | Liquidambar algeanifle. | | 12 | 633 | 2 | ; | 11 | 158 | 187
158 | 1.5
lef | 1.58
1.6 | 47.88
lef | 59.58
 | | black
marielyses | Henra eqlesties
Gerrana annaiors | | 14 | 824 | • | ì | 12 | 521 | 648 | HA | lef | lef . | lef | 1.11 | blankjank nak | Queress marilandina | | IS | 852 | 1 | | : | 78 | 78 | | 4.00 | 78.88 | 78.88 | 1.11 | abrataat aab | Querrana prisas | Losers Gainers Migrators ## Large Decreasers (Cl. 2) Class 2, Large Decreasers (especially under Had High scenario of climate change) ### Large Increasers (Cl. 6) Class 6, Large Increasers # New Migrants, low or high Class 7 New Migrants, Any scenario of climate change. #### SHIFT (preliminary): Black oak potential migration by 2100 Shift (Preliminary)Output on Current Black Oak IV Forest Density (NLCD data 2000) ### Evaluate FIA plots for MN - FIA from last periodic inventory, not precise locations - Of 9427 plots, 2176 (23%) had black ash - Of these, we evaluated 23 species cooccurring on >4% of the plots # Species with High Potential to Replace Black Ash in the long term - Already live with black ash, either in MN or in points south (OH or MI) - Have potential to do well or at least OK under climate change – according to our DISTRIB models - Have characteristics which allow it to do well under predicted outcomes of climate change – according to our ModFactors # Some summary thoughts on ash and their replacements - The short-term disturbance of EAB infestation will drastically overwhelm longer term impacts of climate change. - Some of the species on list of potential replacements may seem ridiculous to consider as possible replacements. Some will be ridiculous but I encourage being generous in selecting species for further analysis and testing. - Very subtle variations in topography and soils can greatly influence which species may be appropriate. Carefully control and map these factors to minimize mis-matching. ### Management Implications Potential management implications resulting from the above trends include: - Encourage increased connectivity for increaser species. - Evaluate potential for assisted migration. - Encourage retention of refugia which may allow persistence of decreaser species. - Prepare for additional costs likely required to maintain forest health due to increased stress and disturbances (e.g., insect pests, diseases, fire, ice, drought). - Prepare for quite dramatic changes in some iconic north woods species! - This is a terrific application for adaptive management! ### Thank you! For further information, consult our web atlas (www.nrs.fs.fed.us/atlas) or contact me (liverson@fs.fed.us)